SYNTHESIS OF SIX-MEMBERED RING ANALOGUES OF PROSTAGLANDIN F

T.A. EGGELTE¹, H. de KONING, and H.O. HUISMAN
Laboratory of Organic Chemistry, University of Amsterdam,
Nieuwe Achtergracht 129, Amsterdam, The Netherlands

Several isomeric prostaglandin $F_{1\alpha}$ analogues in which the cyclopentane moiety is replaced by a cyclohexane ring, have been prepared starting from the Diels-Alder adduct of 1,4-diacetoxy-1,3-butadiene and dimethyl fumarate.

Whereas a number of prostaglandin analogues with modified five-membered ring (heterocyclic analogues) have been described², only few reports³ dealt with analogues containing a six-membered ring. We wish to report now the synthesis of 9a-homo-PGF_{1 α} ethyl ester and 8,12-diiso-9a-homo-PGF_{1 α} ethyl ester. We reasoned that synthesis of the 1,4-dihydroxycyclohexane part of the analogues might be achieved via Diels-Alder reaction of a dienophile with a protected 1,4dihydroxybutadiene. Due to the stereoselectivity of the Diels-Alder reaction, the configuration of the adduct will be determined by the stereochemistry of the starting materials. Reaction of a dienophile with trans-1,4-diacetoxy-1,3- butadiene $\frac{1}{2}$ - readily available from cyclo-octatetraene $\frac{4}{2}$ - would lead therefore to the required 1,4-cis configuration of the hydroxy groups at the future Co and C_{11} . Reaction of $\underline{1}$ with dimethyl fumarate in refluxing xylene for 20 h afforded adduct 2^5 (m.p.= 128-130°) in 94% yield. Heating 2 in methanol in the presence of p-TsOH for 20 h provided diol 3^6 (m.p.= $158-159.5^{\circ}$), which was converted into the di-THP ether 4 with dihydropyran and p-TsOH in benzene at room temperature. Reduction of the ester groups in $\underline{4}$ was accomplished with LiAlH_A in THF, affording 5 in 81% yield from 2.

Protection of one of the hydroxymethyl groups by reaction with benzyl bromide and NaH in THF or DMF at $60\text{--}70^\circ$ yielded monobenzylated product (67%) along with dibenzylated product <u>6</u> (6%) and starting material <u>5</u> (13%). The monobenzylated product consisted of a 1:2.5 mixture of the two isomers <u>7</u> and <u>8</u> which, after chromatographic separation, were used for the synthesis of 9a-homo-PGF_{1 α} ethyl ester and 8,12-diiso-9a-homo-PGF_{1 α} ethyl ester.

Moffatt oxidation 7 of $\underline{7}$ gave aldehyde $\underline{9}$ which upon Horner reaction with the anion of triethyl phosphonosorbate 8 in THF afforded the unsaturated ester $\underline{10}$ in 58% yield. Catalytic hydrogenation of $\underline{10}$ in ethyl acetate in the presence of 10% Pd/C gave reduction of the double bonds in the ring and the side chain. Subsequent hy-

drogenation of $\underline{11}$ over Pd/C under acidic conditions (ethyl acetate/acetic acid) led to removal of the protecting benzyl group, affording alcohol $\underline{12}$. Moffatt oxidation of $\underline{12}$ gave aldehyde $\underline{13}$ which, after purification by column chromatography, was obtained in 48% yield from $\underline{10}$. Horner reaction of $\underline{13}$ with dimethyl 2-oxo-heptylphosphonate in THF furnished enone $\underline{14}$. Removal of the THP groups in $\underline{14}$ under acidic conditions, followed by reduction of $\underline{15}$ with $\mathrm{Zn}(\mathrm{BH_4})_2$ in DME^9 , yielded a mixture of 9a-homo-PGF $_{1\alpha}$ ethyl ester $\underline{16}$ and its $\mathrm{C_{15}}$ -epimer $\underline{17}^{10}$, which could be separated by column chromatography (TLC; $\mathrm{SiO_2}$, ethyl acetate : $\underline{16}$ Rf= 0.20; $\underline{17}$ Rf= 0.30).

Isomer $\underline{8}$ could be converted into aldehyde $\underline{18}$ (50% overall yield) in a similar way as has been described for the conversion of $\underline{7}$ into $\underline{13}$. Horner reaction of $\underline{18}$ with excess dimethyl 2-oxoheptylphosphonate and NaH in THF, however, proceeded differently from the corresponding reaction of $\underline{13}$. Besides enone $\underline{19}$ two other compounds were isolated. These compounds ($\underline{21}$ and $\underline{22}$) originate from elimination of a tetrahydropyranyloxy group in $\underline{18}$, leading to the formation of α,β -unsaturated aldehyde $\underline{20}$, which can react with the anion of dimethyl 2-oxo-heptylphosphonate to give dienone $\underline{21}$. The eliminated tetrahydropyranyloxy group contains a masked aldehyde function which also can react in a Horner reaction, yielding 2-(2-oxoheptyl) tetrahydropyran $\underline{22}^{11}$. Aldehyde $\underline{20}$ could be isolated, along with enone $\underline{19}$, if only 1 equivalent of phosphonate anion was used, and the reaction was performed at room temperature instead of 65° .

Removal of the THP groups in $\underline{19}$ and subsequent reduction of $\underline{23}$, thus obtained, with $\operatorname{Zn}(\operatorname{BH}_4)_2$ in DME gave a mixture of 8,12-diiso-9a-homo-PGF $_{1\alpha}$ ethyl ester $\underline{24}$ and its C_{15} epimer $\underline{25}$, which could be separated (TLC; SiO_2 , ethyl acetate: $\underline{24}$ Rf=0.26; $\operatorname{25}$ Rf= 0.33).

The configuration of the analogues was established at the stage of the dihydro-xy-enone compounds $\underline{15}$ [IR (CHCl $_3$): 3500 (OH), 1680 and 1620 (enone) cm $^{-1}$; NMR (CDCl $_3$): δ = 6.18 (d) C $_{14}$ -H; δ = 6.53 (dd, J $_{13,14}$ = 16, J $_{12,13}$ = 9Hz) C $_{13}$ -H] and $\underline{23}$ [NMR (CDCl $_3$): δ = 6.08 (d) C $_{14}$ -H; δ = 6.86 (dd, J $_{13,14}$ = 16, J $_{12,13}$ = 9Hz), C $_{13}$ -H]. The NMR spectrum of $\underline{15}$ displayed, for the protons at C $_9$ and C $_{11}$, a broad signal (H $_{ax}$) at δ = 3.99 and a narrow signal (H $_{eq}$) at δ = 3.38. Assuming a diequatorial position of the side chains at C $_8$ and C $_{12}$, the relative configuration can be resolved by irradiating C $_{12}$ -H.

Thus irradiation at $\delta=2.10$ changed the double doublet of C_{13}^-H into a doublet and caused sharpening of the broad signal at $\delta=3.99$, whereas the narrow signal was unaffected. From these results it can be concluded that C_{11}^-H occupies an axial position, indicating a <u>trans</u> relationship for the substituents at C_{11} and C_{12} . Enone <u>23</u> exhibited a broad signal at $\delta=3.80$ (H_{ax}) and a narrow signal at $\delta=3.41$ (H_{eq}) for the protons at H_{eq} 0 and H_{eq} 1. Irradiation at H_{eq} 2.03 (H_{eq}^-H 3) caused sharpening of the narrow signal at H_{eq}^-H 4. Whereas the broad signal at H_{eq}^-H 5 are 3.80 was unaffected now. This implies a <u>cis</u> relationship for the substituents at H_{eq}^-H 6 and H_{eq}^-H 7.

The screening of the <u>in vivo</u> and <u>in vitro</u> biological activities of the four 9a-homo-PGF $_1$ stereoisomers showed the relative configurations at $^{\rm C}_8$, $^{\rm C}_{12}$ and $^{\rm C}_{15}$ to

be important for the potency. The isomer with "natural" relative configuration $(\underline{16})$ appeared to possess the highest potency. Details will be published elsewhere 13 .

<u>Acknowledgement</u> - The authors are indebted to Drs. A.F. Harms and D.W.R. Hall and their co-workers of Gist-Brocades N.V. (Delft, The Netherlands) for performing the biological screening.

REFERENCES

- 1. Part of the thesis of T.A. Eggelte, University of Amsterdam (1976).
- 2. G.P. Rozing, T.J.H. Moinat, H. de Koning and H.O. Huisman, Heterocycles, $\underline{4}$, 719 (1976) and references cited therein.
- N.S. Crossley, Tetrahedron Letters, 3327 (1971); J.M. Muchowski and
 E. Velarde, Prostaglandins, <u>10</u>, 297 (1975); J. Fried, T.S. Santhanakrishnan,
 J. Himizu, C.H. Lin, S. Heim-Ford, B. Rubin and E.O. Grigas, Nature, <u>223</u>,
 208 (1969).
- 4. Organic Synthesis, <u>50</u>, 24 (1970).
- 5. After the completion of this work, G.W. Holbert and B. Ganem, J.Org.Chem.,
 41, 1655 (1976), reported this reaction to give 2 in 76% yield, m.p.=129-131.
- 6. This compound $(m.p.=160.5-161.5^{\circ})$ has been obtained in a different manner by S.A. Cerefice and E.K. Fields, J.Org.Chem., 41, 355 (1976).
- 7. K.E. Pfitzner and J.G. Moffatt, J.Amer.Chem.Soc., 87, 5661, 5670 (1965).
- 8. H. de Koning, G.N. Mallo, A. Springer-Fidder, K.E.C. Subramanian-Erhart and H.O. Huisman, Recl.Trav.Chim. Pays-Bas, 92, 683 (1973).
- 9. E.J. Corey, N.M. Weinshenker, T.K. Schaaf and W. Huber, J.Amer.Chem.Soc., 91, 5675 (1969).
- 10. The more polar isomer (TLC; silica gel) was tentatively assigned the α -configuration at C $_{15}$ by analogy with the chromatographic behaviour of the esters of the natural prostaglandins.
- 11. This compound was also obtained in a separate experiment from 2-hydroxy-tetrahydropyran.
- 12a. The elimination of the tetrahydropyranyloxy group in $\underline{18}$ is in support of the assigned $C_{12}^{-C}C_{13}$ $\underline{\text{cis}}$ configuration; see N. Finch, J.J. Fitt and I.H.S. Hsu, J.Org.Chem., $\underline{40}$, $\underline{206}$ (1975).
 - b. Additional evidence for the relative configuration of the analogues was also obtained in an early stage of the synthesis by converting alcohol $\underline{8}$ into the enone $\underline{26}$.

$$C_3$$
-H $\delta = 3.97$ $J_{3,4} = 9$ Hz

 C_6 -H $\delta = 4.28$ $J_{5,6} = 3.5$ Hz

 C_6 -H $\delta = 4.28$ $J_{5,6} = 3.5$ Hz

The observed coupling constants $J_{3,4}$ and $J_{5,6}$ were typical of <u>trans</u> and <u>cis</u> vicinal protons, respectively.

13. D.W.R. Hall and K.D. Jaitly, to be published.